Learning Deep Latent Gaussian Models with Markov Chain Monte Carlo

نویسنده

  • Matthew D. Hoffman
چکیده

Deep latent Gaussian models are powerful and popular probabilistic models of highdimensional data. These models are almost always fit using variational expectationmaximization, an approximation to true maximum-marginal-likelihood estimation. In this paper, we propose a different approach: rather than use a variational approximation (which produces biased gradient signals), we use Markov chain Monte Carlo (MCMC, which allows us to trade bias for computation). We find that our MCMC-based approach has several advantages: it yields higher held-out likelihoods, produces sharper images, and does not suffer from the variational overpruning effect. MCMC’s additional computational overhead proves to be significant, but not prohibitive.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatial Latent Gaussian Models: Application to House Prices Data in Tehran City

Latent Gaussian models are flexible models that are applied in several statistical applications. When posterior marginals or full conditional distributions in hierarchical Bayesian inference from these models are not available in closed form, Markov chain Monte Carlo methods are implemented. The component dependence of the latent field usually causes increase in computational time and divergenc...

متن کامل

Bayesian Leave-One-Out Cross-Validation Approximations for Gaussian Latent Variable Models

The future predictive performance of a Bayesian model can be estimated using Bayesian cross-validation. In this article, we consider Gaussian latent variable models where the integration over the latent values is approximated using the Laplace method or expectation propagation (EP). We study the properties of several Bayesian leave-one-out (LOO) crossvalidation approximations that in most cases...

متن کامل

Extending INLA to a class of near - Gaussian latent models by

This work extends the Integrated Nested Laplace Approximation (INLA) method to latent models outside the scope of latent Gaussian models, where independent components of the latent field can have a near-Gaussian distribution. Two important class of models that can be addressed with our proposed method are non-Gaussian random effects models and dynamic models with non-Gaussian error term for the...

متن کامل

Learning Dependent Dictionary Representation with Efficient Multiplicative Gaussian Process

In dictionary learning for analysis of images, spatial correlation from extracted patches can be leveraged to improve characterization power. We propose a Bayesian framework for dictionary learning, where spatial location dependencies are captured by imposing a multiplicative Gaussian process prior on the latent units representing binary activations. Data augmentation and Kronecker methods allo...

متن کامل

Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations

Structured additive regression models are perhaps the most commonly used class of models in statistical applications. It includes, among others, (generalized) linear models, (generalized) additive models, smoothing spline models, state space models, semiparametric regression, spatial and spatiotemporal models, log-Gaussian Cox processes and geostatistical and geoadditive models. We consider app...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017